人类数据缺缺缺,ai被迫开始吃ai生产的数据了!
(资料图)
这是微软、openai等一众ai前沿公司面临的现状。
他们从维基百科、电子书、新闻网站、博客、推特和reddit等平台和论坛中搜罗了大量数据,然后现在……这些数据快被用完了。
but,要训练更好的大模型,多少数据都不够。
据《金融时报》介绍,不少公司正把大模型生成的结果、也就是所谓的合成数据(synthetic data),喂给参数量更小的大模型吃,发现效果还不错。
对于使用合成数据,openai的ceo sam altman不仅不介意,还放话“未来所有数据都将变成合成数据”。
估值20亿美元的大模型初创公司cohere同样在用合成数据。公司ceo、经典大模型transformer论文作者之一aidan gomez甚至认为:
合成数据可能加速通往“超级智能”ai系统的道路。
所以,究竟哪些大模型已经在用合成数据了,这些合成数据又是从何而来?
人类数据告急,微软openai开始用ai喂ai,奥特曼放话:未来所有数据都将变成合成数据-ag凯发k8国际
这些所谓的合成数据,本质上是用当前表现较好的大模型生成的数据,经过人工调整后,再喂给稍微小一点的大模型。
例如cohere公司就尝试使用了两个大模型进行“角色扮演”对话,并将它们生成的结果做成合成数据。
这两个大模型分别扮演“数学老师”和“学生”,正在进行一堂虚拟的数学教学。同时,cohere安排一个人类员工在旁边监督对话生成。
一旦对话出现错误,人类员工就会插手对文本进行修正。
尽管确实还需要人力,但这比聘请科学、医学和商业方面的专家来撰写文本要便宜得多。
那么,什么样的大模型会用到这些合成数据呢?
微软研究院最近有研究表明,合成数据可以用于训练比gpt-4或palm-2稍微小一点的语言模型。
以用gpt-4生成的一个“四岁儿童小说”数据集tinystories为例,这个数据集被证明虽然只包含4岁小孩能理解的单词,但用于训练一个大模型之后,同样可以生成语法正确、阅读体验流畅的故事:
对于使用合成数据的理由,cohere的ceo aidan gomez认为:
能从网上获取数据当然更好,但网络数据太杂乱了,完全无法满足需求。相比之下,合成数据已经非常多了,即使它还没被广泛传播。
目前,包括scale ai、gretel.ai等企业,已经开始给外界提供合成数据服务。
先是scale ai,旗下就推出了一款合成数据产品scale synthetic,用于给企业提供合成数据服务。
而在之前一篇semianalysis爆料gpt-4“大花边”的新闻中,还提到gpt-4的数据集中,有数百万行是来自scale ai和内部的指令微调数据。
至于合成数据平台gretel.ai,从ag凯发k8国际官网来看,它已经和谷歌、拳头游戏、汇丰银行等不同企业进行了合作,以生成更多合成的数据提供给其他开发者使用。
gretel.ai的ceo ali golshan认为,合成数据的好处在于,它保留了数据集中所有个人的隐私,同时仍然保持其统计学意义上的完整性(statistical integrity)。
但并非所有人都接受合成数据这种“神奇操作”,目前各方的看法主要分成两波。
一部分赞同使用合成数据。包括cohere等ai公司在内,有不少搞大模型的企业仍然坚持这一做法,并认为它可能生成更好的ai,甚至从中诞生出“超级智能”。
另一部分则认为,合成数据终将让ai“自食其果”。
例如一篇来自牛津大学、剑桥大学、帝国理工学院、多伦多大学、爱丁堡大学和vector institute多家机构的研究表明:
使用合成数据训练,会让模型出现不可逆转的缺陷:
忘记那些“不可能发生的事件”,最终被自己生成的数据毒害。
有网友认为,这些合成数据最后会变成一滩“无法使用的污泥”——然后人们不得不被迫雇佣数据科学家来对它进行清洗。
还有网友调侃,这听起来就像是“ai近亲繁殖”一样。
你认为ai需要使用合成数据吗?
编辑/lambor